
Processing Posting Lists Using OpenCL

Advisor

Dr. Chris Pollett

Committee Members

Dr. Thomas Austin

Dr. Sami Khuri

By

Radha Kotipalli

Agenda

• Project Goal
• About Yioop
• Inverted index
• Compression Algorithms
• Encoding & Decoding
• PHP Extensions
• OpenCL
• Test Results
• Conclusion

Project Goal

• Improve the Posting Lists’ performance of
Yioop search engine using PHP Extensions (C
and OpenCL)

• Identify the resource intensive functions in the
existing Yioop’s code

• Replacing them with PHP C-Extensions

• Modify with OpenCL-Extensions, where the
parallelism can benefit most

About Yioop

• Designed and developed by Dr. Pollett

• PHP- based search engine

• Open source

• Search engines use inverted index

• Uses Modified9 compression algorithm to
encode and decode posting lists

Inverted Index

• An index data structure (inverted/postings file)

• Maps contents to its locations in document
database

• Consists of two components

• Dictionary: unique words that appear in all documents

• Posting Lists: [doc_id, index positions of the word]

• Stored in a compressed binary format

Inverted Index …

• Uncompressed inverted index can be larger
than original data

• Compressed
• Less storage requirement

• Fast query retrieval time

• Can accommodate large collections

• Compression Algorithm
• Encoder

• Decoder : Lossy & Lossless

Posting Lists
• Larger part of inverted index consists of Posting Lists
• Contains unique large number of elements
• Monotonically increasing index positions
• Replace with Δ-values

• Difference between consecutive elements
• Smaller numbers
• Encoded with fewer bits

• Two compression algorithms
• Non-parametric: Does not consider the Δ-values in a given

posting list
• Ex: Elias's γ-code

• Parametric: considers the specific characteristics of the list
to be compressed
• Ex: Golomb/Rice code

Byte & Word-Aligned codes

• To improve compression and decompression
speed

• Look at codes so that the split between code
words falls on byte or word boundaries

• Two types :

• Byte-Aligned

• Word-Aligned

Byte-Aligned codes

• vByte (variable-byte coding)

• Splits the binary representation of each Δ-value
into 7-bit chunk + 1 bit continuation flag

• Ex: L = (1624, 1650, 1876, 1972, 2350, ...)

 Δ (L) = (1624, 26, 226, 96, 384 ...)

Binary format of 1624: 11001011000

1 1011000 0 0001100 0 0011010 1 1100010 0 0000001 0
1100000 1 0000000 0 0000011...

0 at the beginning of the chunk indicates the end of the
current code word. (88 + 12* 2^7 = 1624)

Word- Aligned codes

• Inspects the postings list's Δ-values and tries
to insert as many consecutive Δ-values as
possible into a 32-bit machine word

• Simple-9 algorithm

• 4 bits for a selector (tells # of Δ-values stored)

• 28 bits for Δ-values

Selector 0 1 2 3 4 5 6 7 9

Number of Δ's 1 2 3 4 5 7 9 14 28

Bits per Δ
28 14 9 7 5 4 3 2 1

Unused bits/word 0 0 1 0 3 0 1 0 0

Word-Aligned codes …

• Ex : L = (1624, 1650, 1876, 1972, 2350, ...)

• Δ (L) : 1624 25 225 95 383 [Δ-value: [1650 -
1624 -1] = 25 ...]

• The above indexes can be saved as 1624 and
25 together as two 14-bits each;

• 225, 95, and 383, together as three 9-bits
each, and one unused bit at the end.

Yioop Encoding

• Uses Modified9 algorithm for compression

• Modified9 is similar to Simple-9, inserts as many
consecutive Δ-values as possible into a 32-bit
machine word

• First 2 bits tell whether or not to look at the next
word
• 11 start of encoded string

• 10 continue four more bytes

• 01 end of encoded

• 00 indicates the whole sequence encoded in one word

Yioop Encoding …

• Next most significant bits represents selector

• Selector can be 2, 4, 5, or 6 bits

Selector 00

(0)

01

(1)

10

(2)

1100

(12)

1101

(13)

1110

(14)

11110

(30)

111110

(62)

111111

(63)

Number

of Δ's

1 2 3 4 5 6 7 12 24

Bits per

Δ

28 14 9 6 5 4 3 2 1

Unused

bits

0 0 1 0 1 2 4 0 0

Yioop Encoding

• A typical posting list: [doc_index, index positions]

• Ex: L: [25, [1624 1650 1876 1972 ...]] (doc_index: 25)
Δ-values: [1624, 26, 226, 96, ...] [Δ-value: [1650 -1624]
= 26, ...]

• The above indexes can be saved as 26 and 1625 together
as two 14-bits each in one 4-byte word

• 26, 226, and 96 together as three 9-bits each, and one
unused bit in one 4-byte word

• The final encoded string:

• Hex String: D0 06 86 5A A0 65 C4 60

Yioop Decoding

 Decoding Flowchart Index shard

Yioop Decoding …

• The unpackPosting() is the starting point
• The nextPoststring() identifies the complete posting string from the

given packed integer string of a posting list by checking first two
MSB of each 4-byte string (“11” for start and “01” for the end)

• The unpackListModified9() takes 4-byte string at a time, removes
first two MSB bits and then observes the next bits to identify the
number of Δ-values in that 4-byte string

• Decodes the string back into its Δ-values according to Modified9.
• Repeats the process until the end of the complete posting string to

get back all the Δ-values
• The deDeltaList(), converts the values back into the original index

positions.
• Returns [doc_index, [index postions]]

PHP Extensions

• A way to customize or extend the default
functionality of PHP

• Two types of Extensions

• Standard Extensions : comes with PHP
distribution

• MySQL, cURL etc.

• Zend Extensions : Can be written in

• Java

• C/C++

Why do we need Extensions?

• Customize or introduce new functionality

• To improve performance

• To hide the proprietary source code

• Reuse of existing code

OpenCL (Open Computing Language)

• Framework built specifically for parallel
processing over heterogeneous systems

• Parallel programs can be written in C-language
and can exploit the power of GPU threads

• Portability across multiple platforms

• Host Code: C/C++ code run on CPU

• To transfer data between memories (CPU & GPU)

• To execute device/kernel code (GPU)

• Kernel/Device code: Executes on GPU

OpenCL Program Flow

1. Organize resources, Create command queue

2. Compile Kernel

3. Transfer data from host(CPU) to GPU memory

4. Launch threads running kernels on GPU,
Perform main computation

5. Transfer data back to host memory from GPU

6. Free allocated memory

OpenCL Program Flow …

Creating PHP Extensions

Some of the important practices while writing PHP extensions
• Zend function to read input data

• Letter ‘l’ represents a variable type long which is used to read
an integer or long values.

• Letter ‘a’ represents a variable type array
• Letter ‘s’ represents a variable type string
• Letter ‘b’ represents a boolean value type.
• Symbol ‘|' is given in front of the variable type, if the parameter

is an optional.

zend_parse_parameters(ZEND_NUM_ARGS() TSRMLS_CC,

 "las|b", &doc_index, &position_list, &str, &str_len, &delta)

Creating PHP Extensions …

• To convert zval* array structure into regular C
array

for(zend_hash_internal_pointer_reset_ex(arr_hash, &pointer);

 zend_hash_get_current_data_ex(arr_hash, (void**) &data, &pointer)

 == SUCCESS; zend_hash_move_forward_ex(arr_hash, &pointer))

 {

 pos_list.arr[i] = Z_LVAL_PP(data);

 i++;

 }

Creating PHP Extensions …

• To send one of the arguments as pass-by-ref, it
needs to be declared in the arginfo structure
ahead

 ZEND_BEGIN_ARG_INFO_EX(unpackPosting_arginfo, 0,

 ZEND_RETURN_VALUE, 2)

 ZEND_ARG_INFO(0, posting) // 0 means "passed by value"

 ZEND_ARG_INFO(1, off_set) // 1 means "passed by reference"

 ZEND_END_ARG_INFO();

PHP Vs C Extensions Functions

• All the functions involved in the Yioop’s encoding and
decoding are replaced with PHP C Extensions and additional
functionality has been introduced to match with the existing
PHP code.

• String length and array

 length are used

 frequently in the PHP

 code, the same was

 achieved through a

 struct.

• Same is done for shift

 functions

PHP Built-in C

str_len() struct { chr*, int len}

array len() struct {int*, int len }

array_shift() C_arrary_shift()

array_unshift() C_array_unshift()

OpenCL code

• The deltaList() and unpackListModified() were
implemented in OpenCL

• The first two steps shown in OpenCL program
flow are needed for each OpenCL function call

• To reduce above overhead, wrote a function
using global variables and initialized at startup
instead of calling for each function call

Test Variations

• Languages: PHP, C, and OpenCL Extensions

• Processors: i5 + Intel HD Graphics, i7 + Nvidia

• Version: PHP 5 and PHP 7

• Bits: 32 and 64 bit

• Documents Size: 10,000 and 100,000

• Rank (term frequency) : 13, 310, and 3000
PS: Most frequent rank 13 was chosen between (1 -100),

moderate frequent 310 was chosen between (100 -1000),
and less frequent 3000 was chosen between (1000 -
10000) randomly through a program

Test Scenarios

With above combinations of variations the
following scenarios were tested

• Encoding: Measures the time taken to encode
postings for a given rank

• Decoding: Measures the time taken to decode
the above encoded string

• Browser-based testing: Measures the time
taken for a search

Encoding Test Results

Encoding Test Results for10,000 documents (PHP5, 32 bit, i5+HD GPU)

Encoding Test Results for100,000 documents (PHP5, 32 bit, i5+HD GPU)

0
0.5

1
1.5

2
2.5

3
3.5

4

most-frequent(13) moderate-frequent(310) less-frequent(3000)

P
ro

ce
ss

in
g

Ti
m

e
 (

se
c)

Rank

PHP

C

OpenCL

0

10

20

30

40

most-frequent(13) moderate-frequent(310) less-frequent(3000)

P
ro

ce
ss

in
g

Ti
m

e
 (

se
c)

Rank

PHP

C

OpenCL

Encoding Test Results …

Encoding Test Results for10,000 documents (PHP5, 32 bit, i7+Nvidia GPU)

Encoding Test Results for100,000 documents (PHP5, 32 bit, i7+Nvidia GPU)

0

0.5

1

1.5

2

2.5

3

most-frequent(13) moderate-frequent(310) less-frequent(3000)

P
ro

ce
ss

in
g

Ti
m

e
 (

se
c)

Rank

PHP

C

OpenCL

0

5

10

15

20

25

30

35

most-frequent(13) moderate-frequent(310) less-frequent(3000)

P
ro

ce
ss

in
g

Ti
m

e
 (

se
c)

Rank

PHP

C

OpenCL

Encoding Test Results …

Encoding Test Results for 10,000 documents (PHP7, 32 bit, i5)

Encoding Test Results for100,000 documents (PHP7, 32 bit, i5)

0

0.5

1

1.5

most-frequent(13) moderate-frequent(310) less-frequent(3000)

P
ro

ce
ss

in
g

Ti
m

e
 (

se
c)

Rank

PHP

C

0

5

10

15

20

most-frequent(13) moderate-frequent(310) less-frequent(3000)

P
ro

ce
ss

in
g

Ti
m

e
 (

se
c)

Rank

PHP

C

Encoding Test Results …

Encoding Test Results for 10,000 documents (PHP7, 32 bit, i7)

Encoding Test Results for100,000 documents (PHP7, 32 bit, i7)

0

0.2

0.4

0.6

0.8

1

1.2

1.4

most-frequent(13) moderate-frequent(310) less-frequent(3000)

P
ro

ce
ss

in
g

Ti
m

e
 (

se
c)

Rank

PHP

C

0

2

4

6

8

10

12

14

most-frequent(13) moderate-frequent(310) less-frequent(3000)

P
ro

ce
ss

in
g

Ti
m

e
 (

se
c)

Rank

PHP

C

Decoding Test Results

Decoding Test Results for 10,000 documents (PHP5, 32 bit, i5+HD Graphics)

Decoding Test Results for100,000 documents (PHP5, 32 bit, i5+HD Graphics)

0

5

10

15

20

25

30

35

most-frequent(13) moderate-frequent(310) less-frequent(3000)

P
ro

ce
ss

in
g

Ti
m

e
 (

se
c)

Rank

PHP

C

OpenCL

0

500

1000

1500

2000

2500

3000

most-frequent(13) moderate-frequent(310) less-frequent(3000)

P
ro

ce
ss

in
g

Ti
m

e
 (

se
c)

Rank

PHP

C

OpenCL

Decoding Test Results …

Decoding Test Results for 10,000 documents (PHP5, 32 bit, i7+Nvidia Graphics)

Decoding Test Results for100,000 documents (PHP5, 32 bit, i7+Nvidia Graphics)

0

5

10

15

20

25

most-frequent(13) moderate-frequent(310) less-frequent(3000)

P
ro

ce
ss

in
g

Ti
m

e
 (

se
c)

Rank

PHP

C

OpenCL

0

500

1000

1500

2000

2500

most-frequent(13) moderate-frequent(310) less-frequent(3000)

P
ro

ce
ss

in
g

Ti
m

e
 (

se
c)

Rank

PHP

C

OpenCL

Decoding Test Results …

Decoding Test Results for 10,000 documents (PHP7, 32 bit, i5)

Decoding Test Results for100,000 documents (PHP7, 32 bit, i5)

0

1

2

3

4

5

6

most-frequent(13) moderate-frequent(310) less-frequent(3000)

P
ro

ce
ss

in
g

Ti
m

e
 (

se
c)

Rank

PHP

C

0

10

20

30

40

50

60

70

most-frequent(13) moderate-frequent(310) less-frequent(3000)

P
ro

ce
ss

in
g

Ti
m

e
 (

se
c)

Rank

PHP

C

Decoding Test Results …

Decoding Test Results for 10,000 documents (PHP7, 32 bit, i7)

Decoding Test Results for100,000 documents (PHP7, 32 bit, i7)

0

0.5

1

1.5

2

2.5

3

most-frequent(13) moderate-frequent(310) less-frequent(3000)

P
ro

ce
ss

in
g

Ti
m

e
 (

se
c)

Rank

PHP

C

0

5

10

15

20

25

30

35

most-frequent(13) moderate-frequent(310) less-frequent(3000)

P
ro

ce
ss

in
g

Ti
m

e
 (

se
c)

Rank

PHP

C

PHP version comparison

PHP5 Vs PHP7 Encoding Performance Comparison

PHP5 Vs PHP7 Decoding Performance Comparison

0

2

4

PHP 5 PHP 7 P
ro

ce
ss

in
g

Ti
m

e
 (

se
c)

PHP Version

PHP Version Encoding Performance Comparison

PHP

C

0

10

20

30

40

PHP 5 PHP 7 P
ro

ce
ss

in
g

Ti
m

e
 (

se
c)

PHP Version

PHP Version Decoding Performance Comparison

PHP

C

Browser-based Test Results

Query performance from browser

0

5

10

15

20

25

30

35

40

45

Single Word Double Word Triple Word

P
ro

ce
ss

in
g

Ti
m

e
 (

m
s)

Search words

Browser-based Testing (PHP5)

PHP

C

OpenCL

Browser-based Test Results…

Query performance from browser

0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

Single Word Double Word Triple Word

P
ro

ce
ss

in
g

ti
m

e
 (

se
c)

Search words

Browser-based Testing(PHP7)

PHP

C

Conclusion

• C extensions performed 3 times better when compared to the
original PHP code for the encoding test case. However,
OpenCL has shown only a 0.4 times improvement for the most
ranked term on an Nvidia based GPU

• C extensions performed 5 times better when compared to the
original PHP code for the decoding test case. OpenCL has
achieved a 4 times improvement for the most ranked term on
both GPUs.

• Original PHP code performed about 2.5 times better for
encoding case and about 6 times for the decoding test by
simply switching to PHP7.

• Another 3 times improvement was observed using C
Extensions along with PHP7 for the encoding case and about
0.4 times with the decoding test case.

Conclusion …

• No performance difference observed with 32 bit versus 64 bit

software.
• Running tests on an i7 machine, initial performance numbers

were found to be very low, as Windows’ defender service was
consuming lot of system resources. Stopping the defender
service improved the results.

• When the tests were run on a Windows 10-based system,
memory compression service was taking up more system
resources than the application itself and skewing the results.

• Browser based tests also had shown performance gains when
C Extensions were used.

Conclusion …

• Overall, Yioop's original code is already well
optimized and achieving further improvements is
not a trivial task. However, these experiments
proved that the Yioop search engine’s
performance can be improved by using a
combination of OpenCL and C extensions for
most resource and compute intensive functions.
The operating system and the right type of GPU
and CPU combination will help achieve optimum
performance results.

References

• [1] The open standard for parallel programming of heterogeneous systems. (2016). Retrieved
on January 15, 2016, from https://www.khronos.org/opencl/

• [2] Extension Writing Part I: Introduction to PHP and Zend. (2015). Retrieved on April 16,
2015, from http://devzone.zend.com/303/extension-writing-part-i-introduction-to-php-and-
zend/#Heading2

• [3] Woolley, C. (2010). Introduction to OpenCL. Retrieved on November 5, 2015, from
http://www.cc.gatech.edu/~vetter/keeneland/tutorial-2011-04-14/06-intro_to_opencl.pdf

• [4] Stefan, B., Clarke, C., Cormack, G. (2010). Information retrieval-Implementing and
Evaluating Search Engines. Cambridge, Massachusetts: MIT Press.

• [5] Benedict, G., Howes, L., Kaeli, D., Mistry, P., Schaa, D. (2011). Heterogeneous
Computing with OpenCL. Morgan Kaufmann.

• [6] Golemon, Sara. Extending and Embedding PHP. Indianapolis, Ind.: Sams, 2006. Print.

• [7] Scholer, F., Williams, H. E., Yiannis, J., and Zobel, J. (2002). Compression of inverted
indexes for fast query evaluation. In Proceedings of the 25th Annual International ACM SIGIR
Conference on Research and Development in Information Retrieval, pages 222-229. Tampere,
Finland.

• [8] Che, S., Jiayuan, M., W. Sheaffer, J., Skadron, K., (). A Performance Study of General
Purpose Applications on Graphics Processors. Retrieved on September 2, 2015, from
https://pdfs.semanticscholar.org/03aa/649535c7e01ac2b3255f2f44131380dc93c7.pdf

• [9] Keane, A. (2016). “GPUS ARE ONLY UP TO 14 TIMES FASTER THAN CPUS” SAYS
INTEL. Retrieved on March 6, 2016, from https://blogs.nvidia.com/blog/2010/06/23/gpus-
are-only-up-to-14-times-faster-than-cpus-says-intel/

• [10] Yioop website. Retrieved on September 2, 2015, from http://www.seekquarry.com/

Questions?

Thank you!!

